If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5w^2+39w+28=0
a = 5; b = 39; c = +28;
Δ = b2-4ac
Δ = 392-4·5·28
Δ = 961
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{961}=31$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(39)-31}{2*5}=\frac{-70}{10} =-7 $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(39)+31}{2*5}=\frac{-8}{10} =-4/5 $
| 17-2x+9x+15=67 | | (9y-4)-(4y+3)=0 | | 6z+48=78 | | -3/4x=-45/32 | | 3/100x+19.40=x | | 4-5+6*2•7=f | | 2x-1+x-1=3x-2 | | 1/3(6x+9)=×-5 | | 17x-3x+6x=20 | | 3(5x-10)=18x-5+2 | | (8-(4-2)-(7-9)))•9=g | | -4+2x-x-3+8x=2x-x-3+8x | | 11k-7k=12 | | -4=2x-x-3+8x | | (8-(4-2)=n | | 1/25(20-4y)=6/25y-4/5 | | 4y+7y=3y-14 | | 5x-(3x-1)=2x-1 | | 2-(5-a)=8 | | (3/4(w))+6=9-(1/4(w)) | | 10103=x30 | | 0.4x+0.1=0.8x-0.7 | | 5(x+4)+3=-12 | | 7r-4r+7=7r+7-r | | |2x+3|=6x-9 | | x^2/x=450 | | 9x/9=10x+15/9 | | 10/3*x=30 | | w+0.75w=24 | | w+0/75w=24 | | G=3.5(p-97) | | 0=40t^2+80t-60 |